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ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is one of the most com-
mon neuromuscular diseases which affects both lower and up-
per motor neurons. In this paper, a dilated one dimensional
convolutional neural network, named ALSNet, is proposed
for identifying ALS from raw EMG signal. No hand-crafted
feature extraction is required, rather, ALSNet is able to take
raw EMG signal as input and detect EMG signals of ALS sub-
jects. This makes the method more feasible for practical im-
plementation by reducing the computational cost required for
extracting features. To our best knowledge, no research work
for identification of ALS from raw EMG signal has been con-
ducted yet. The performance of the ALSNet was evaluated
using popular metrics such as overall accuracy, sensitivity,
specificity and balanced accuracy and compared with other
existing methods. The proposed method showed a better per-
formance than the other existing methods with an overall ac-
curacy of 97.74%.

Index Terms— Neuromuscular, Amyotrophic Lateral
Sclerosis (ALS), Electromyography (EMG), Convolutional
Neural Network (CNN), Dilation

1. INTRODUCTION

Neuromuscular diseases affect the muscles and their nervous
control systems which results in either spasticity or motor
neuron disorder. Parkinson’s disease, Huntington’s disease,
Creutzfeldt–Jakob disease, spinal muscular atrophies, amy-
otrophic lateral sclerosis are some of the examples of neu-
romuscular diseases. Amyotrophic lateral sclerosis (ALS),
also known as Lou Gehrig’s disease or Motor Neuron Disease
(MND), is the most common type of neuromuscular disease
[1]. ALS is a fatal disease that causes progressive loss of both
upper and lower motor neurons that controls different volun-
tary muscles [2]. The term “Amyotrophic” refers to the mus-
cle weakness signifying the disorder of lower motor neurons.
“Lateral sclerosis” refers to the disorder in the motor neurons
of spinar cord [3]. Numerous direct and indirect symptoms of
ALS [4] continue to develop over a long period until the af-
fected person loses his ability to move, talk or eat. Eventually

it results in an early death, usually from respiratory failure.
There is no cure for ALS and 90-95% cases of ALS have
unknown cause [5]. But early diagnosis can be helpful to pre-
vent the relentlessly progressive disorder and improve quality
of life for ALS patients [6]. Since there is no specific diagno-
sis test, it is sometimes difficult to distinguish between ALS
and other neuromuscular diseases [3].

There are different signal domain techniques for analyz-
ing the EMG signal. In case of time domain, zero-crossing
rate, turns–amplitude ratio, root-mean-square (RMS) value
and autoregressive (AR) coefficients are considered as use-
ful features to analyze EMG signal [7]. Different frequency
domain and spectral features [8], the wavelet transform [9],
and various morphological features [10] have been investi-
gated for EMG signal analysis. EMG signals are consisted of
several Motor Unit Action Potentials (MUAPs) and various
features and information can also be extracted from MUAPs.
All the types of features mentioned above plays a useful role
of classification of EMG signals. Based on the features many
classification methods for identifying ALS from EMG signal
have been developed.

The authors in [11] proposed a mel-frequency cepstral co-
efficient (MFCC) based feature extraction scheme with a K-
nearest neighbourhood (KNN) classifier for the classification
of ALS. The authors in [12] proposed a discrete cosine trans-
form (DCT) of EMG signal based feature extraction method.
KNN algorithm was used as the classifier. The authors in [13]
extracted six features from intrinsic mode functions (IMFs) of
the EMG signal using empirical mode decomposition (EMD).
Finally, these features were used in the least square support
vector machine (LS-SVM) classifier for classification. In
[14] a spectral features extraction method from the dominant
motor unit action potential (MUAP) of EMG signals was
proposed with a KNN classifier. CNN classifiers have been
proposed in [15] and [16] based on the time-frequency (T-F)
representation of EMG signal. Short Time Fourier Transform
(STFT), Spectrogram, continuous wavelet transform (CWT),
and smoothed pseudo Wigner–Ville distribution (SPWVD)
have been employed for T-F representation. All of these
methods are based on hand-crafted feature extraction or T-F
representation of EMG Signal. Classification of ALS directly
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Fig. 1. Network Architecture of ALSNet.

without any T-F domain feature extraction or transforma-
tion is not considered in these research works. A classifier that
classifies the raw EMG signal and does not depend on any
hand-crafted signal features will reduce the computational
cost required for extracting features. Thus it will be more
suitable for a practical implementation. Hence, an ALS clas-
sification method from EMG signal without any time-domain
feature extraction or transformation was the motivation of the
proposed research work.

In this paper, a dilated one dimensional (1D) Convolu-
tional Neural Network (CNN) named as ALSNet is proposed
to identify ALS from raw EMG signal. The performance of
ALSNet is compared with different existing methods in terms
of four evaluation metrics- overall accuracy, sensitivity, speci-
ficity and balanced accuracy.

2. PROBLEM DESCRIPTION

EMG signal is a time-series biomedical signal that measures
current or voltage generated in the muscles which represents
the neuromuscular activities. The problem encountered in this
study is to classify the normal and ALS affected subjects from
the corresponding EMG signals. The EMG signals of nor-
mal and ALS subjects are named as Normal EMG and ALS
EMG respectively throughout this paper. Following the con-
ventional rule of binary classification, Normal and ALS EMG
are considered as class 0 and class 1 respectively in this study.

3. PROPOSED SYSTEM

A 1D CNN, named ALSNet is proposed in this study for de-
tecting ALS from EMG signals. The details of the proposed
system is described in this section.

3.1. Network Architecture of ALSNet

The network architecture of ALSNet is shown in Fig. 1. The
EMG signals are used as the input of ALSNet without any
pre-processing or time-frequency domain feature extraction.
The network architecture of ALSNet is developed following
the state-of-the-art CNN systems. There are total of three 1D
convolution layers and each of the convolution layers is fol-
lowed by the ReLU (Rectified Linear Unit) activation func-
tion and a batch normalization layer. Each of the layers has
a higher dilation rate than the previous one. Increasing the

dilation rate increases the gap between two kernels and helps
to integrate more information from a wider context. The idea
of dilated convolution is successfully used in biomedical im-
age segmentation [17]. It is also used in speech synthesis [18]
and sound source localization [19] from raw audio data. In
this study, the dilation rate is increased by one. So, the dila-
tion rate of the three convolution layers are 1,2,3 respectively.
After the final convolution layer, there is a global max pooling
layer. The output from the pooling layer then passes through
two fully connected layers. The first fully connected or dense
layer has 64 nodes followed by a ReLU activation function
and a batch normalization. The final dense layer is the output
layer having a single node with a Sigmoid activation function.

3.2. Class Prediction from ALSNet

Since the activation function of the output layer of ALSNet
is Sigmoid, the output is mapped between 0 to 1. This value
between 0 to 1 found from ALSNet as output represents the
probability of a test segment being class 1 (ALS EMG). If the
probability value is equal to or above than a certain thresh-
old, the segment is predicted as class 1, otherwise, it is pre-
dicted as class 0 (Normal EMG). The threshold is set 0.5 in
this study.

4. EXPERIMENT

In this section, the dataset and the experiment is discussed in
detail.

4.1. Dataset

The clinical EMG signals of N2001 EMGLAB open access
Dataset was used in our experiment [20]. The Dataset was
consisted of three groups- Normal, Myopathy and ALS. The
EMG signals of Normal and ALS groups were used in this
experiment. The Normal group consisted of 10 normal sub-
jects (4 females and 6 males) aged 21-37 years and the ALS
group consisted of 8 patients (4 females and 4 males) aged
35-67 years. All the EMG signals were recorded under usual
conditions for MUAP analysis:

• The recordings were made at low (just above threshold)
voluntary and constant level of contraction.
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• Visual and audio feedback were used to monitor the
signal quality.

• A standard concentric needle electrode were used.

• The EMG signals were recorded from five places in the
muscle at three levels of insertion (deep, medium, low).

• The high and low pass filters of the EMG amplifier
were set at 2 Hz and 10 kHz.
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Fig. 2. Arbitrary segments of Normal and ALS EMG signals

Each of the EMG signals was sampled at 24 kHz fre-
quency and recorded for almost 11 seconds. A total num-
ber of 302 EMG signals recorded from the brachial biceps
and medial vastus muscles were used in this experiment. Out
of the 302 EMG signals, 151 signals were from the Normal
group and the rest of the 151 signals were from the ALS
group. Each of these 302 signals was then segmented into
11 segments where each of the segments had a time duration
of 1s. So, the size of the dataset used in this experiment is-
302 × 11 = 3322. An arbitrary segment from each of the
Normal and ALS EMG signals is shown in Fig. 2.

The dataset was splitted into train, validation and test set
by a ratio of 80:20:25. The training, validation and test sets
were made up of data from different subjects so that the pro-
posed model can be trained and evaluated properly. Summary
of the datset is shown in Table 1.

Table 1. Summary of the dataset used in the experiment
Train Validation Test

No. of segments 2125 532 665

4.2. ALSNet Model Training

The proposed model, ALSNet was developed using the Keras
and Tensorflow frameworks. Kaggle’s GPU was used as the

hardware accelarator for training the model. The loss function
for the training algorithm was Binary Cross-entropy. Adam
was used as the optimizer algorithm with an initial learning
rate of 0.001. The learning rate was decreased by a factor of
10 whenever the validation loss did not decrease or started
increasing for consecutive epochs. The minimum learning
rate set 10−10. The training was stopped early if there was no
significant improvement of the validation loss for consecutive
epochs.

The summary of the model training is provided in Table
2 and the loss curves (both training and validation) are shown
in Fig. 3.

Table 2. Summary of the training configurations of ALSNet
Accelerator GPU

Loss function Binary Cross-entropy
Optimizer Adam

Initial learning rate 0.001
No. of epochs 67

Batch size 48
Execution time 721.7s

Fig. 3. Training and validation loss curves

5. PERFORMANCE EVALUATION

The achieved results of the proposed approach along with the
evaluation metrics are discussed in this section.

5.1. Evaluation Metrics

The metrics used for evaluating our proposed methods are-
Overall Accuracy, Sensitivity, Specificity and Balanced Ac-
curacy,

• Overall Accuracy: TP+TN
TP+FP+TN+FN
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• Sensitivity (True Positive Rate): TP
TP+FN

• Specificity (True Negative Rate): TN
TN+FP

• Balanced Accuracy: Sensitivity + Specificity
2

TP, FP, TN, FN are True Positive, False Positive, True Nega-
tive and False Negative respectively.

5.2. Results

Let, the test set be denoted by S. As mentioned in Section 3.2,
for a segment s ∈ S , the output of ALSNet is a probability
value which indicates the probability of that segment being an
ALS EMG. Let that probability value is denoted by P (s = 1)
(∀s ∈ S). If P (s = 1) > threshold, then the predicted class
is class 1 (ALS EMG), otherwise, it will be class 0 (Normal
EMG). Since the problem encountered in this experiment is a
binary classification, the threshold was set to 0.5. Finally, the
predicted classes were matched with the ground truth. The
probability values for the test segments are shown in Fig.4.
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Fig. 4. Probability values of class 1 predicted from ALSNet
on test segments

ALSNet was able to predict 650 EMG signal segments
accurately out of 665 segments in the test set. The confusion
matrix is shown in Fig. 5.

The result of the proposed method is compared with the
results shown in different existing research works in terms of
the evaluation metrics mentioned in Section 5.1. The com-
parison is shown in Table. 3. From Table. 3, it is clear
that ALSNet performs better than the mentioned methods in
case of overall accuracy and sensitivity. In case of specificity,
the methods in [14] and [16] perform slightly better. But if
the balanced accuracy is considered, ALSNet outperforms the
other methods.

0 1
predicted label

0

1

tru
e 
la
be

l

350 5

10 300
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Table 3. Result comparison of ALSNet with existing methods

Method
Overall
Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Balanced
Accuracy
(%)

Doulah A.B.M.S.U.
and Fattah S.A. [11] 92.50 76.00 98.00 87.00

Doulah A.B.M.S.U. et
al. [12] 95.00 86.00 98.00 92.00

Misra V.K. et al. [13] 95 93.00 92.54 92.75
Krishna A. and
Thomas P. [14] 96.5 88 99.33 93.67

Sengur A. et al. [15] 96.69 94.24 97.59 95.92
Sengur A. et al. [16] 96.80 94.8 98.8 96.8
ALSNet 97.74 96.77 98.59 97.68

6. CONCLUSION

A 1D dilated convolutional neural network based approach is
proposed in this paper for identifying ALS from raw EMG
signal. The performance of the method in terms of overall ac-
curacy, sensitivity, specificity and balanced accuracy showed
good promise. This method can be useful in early diagno-
sis of ALS which will help improving the quality of life and
prolong survival of an ALS patient. Since any hand-crafted
feature extraction is not required for ALSNet, the computa-
tional cost of extracting those features will also be reduced.
So, the proposed method is more applicable for practical im-
plementation.
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