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  Abstract— A novel method for localizing or estimating the 
direction of a sound source from the speech mixed with different 
levels of noise recorded by a microphone array embedded in an 
Unmanned Aerial Vehicle (UAV) has been proposed in this 
paper. Publicly available DREGON dataset (The IEEE Signal 
Processing CUP 2019 dataset for static task) has been used. The 
detail methodology of the system for localizing the sound source 
in static condition of the UAV is described in this paper. 
Generalized Sidelobe Canceller (GSC) Beamformer on the noisy 
audio is used to extract the noise along the rotor directions. This 
extracted noise is the simulated to synthesize 8 channel audio 
using pyroomacoustics. Finally the extracted noise is used as the 
reference of the wiener filter for filtering the noise in the 
provided noisy audios. GCC PHAT and GCC NON LIN methods 
are used to estimate the elevation and azimuth of the sound 
source. Promising results have been found using this method to 
localize the sound source of human speech from the audios of snr 
as low as -20 dB recoreded by a microphone array embedded on 
a UAV. If at most 10� of error in angle is allowed, our proposed 
method provides an accuracy of almost 91.67%. 

Index Terms— static, generalized sidelobe canceller beamformer, 
wiener filter, pyroomacoustics, azimuth, elevation.  

I. INTRODUCTION  

Sound Source Localization (SSL) is a very challenging 
problem with increasing use in modern days. In the field of 
robotics, automation and rescue missions SSL plays a very 
key part. With the advancement of robotics, Unmanned Aerial 
Vehicles (UAV) commonly referred as drones are becoming 
very popular in different applications especially when they are 
equipped with different forms of sensors. In cases of natural 
hazards such as mass fire, earthquakes or other forms of 
hazards where a rescue mission is required to save people’s 
lives but there’s a lack of visual feedback, UAVs equipped 
with microphone may come handy to locate affected people in 
these hazardous situations from their voice which is in fact a 
SSL problem. With the target speech signal, many forms of 
noises (rotor noises, noises due to air friction etc.) are being 
added as it is received by the microphone array embedded 

with the UAV which makes it even more challenging. The 
goal of this paper is to propose a state of the art method to 
successfully locate sound sources in the case where the UAV 
is in static position. 

A.  Description of the dataset  

Publicly available DREGON dataset (The IEEE Signal 
Processing CUP 2019 dataset for static task) has been used. 

The database contained 300 8-channel audio recordings 
at 44.1 kHz and of roughly 2 seconds each in the form of wav 
files, named 1.wav to 300.wav.  Each  of these were obtained 
by summing a clean recording of a static loudspeaker emitting 
speech from an unknown (azimuth, elevation) direction in the 
array’s frame, and a recording of UAV noise of the same 
length in various flight conditions and using various signal-to-
noise ratios. The goal is to retrieve the azimuth and elevation 
angles of the static speech source for each of the provided 300 
recordings.  

B. Related Works 

Audio acquisition via any automated or semi-automated 
vehicle or robot faces some common challenges, including 
ego noise. For example, [5] deals with self-noise 
considerations in case of audio enhancement for acquisition of 
audio via a humanoid robot, for microphones close to speakers 
or affected by limb movements at peripheral locations. In [9], 
a non-parametric Bayesian model is proposed based on non-
negative matrix factorization at single channel, which is 
independent of motion information. On the other hand, [10] 
uses neural networks to predict the internal noise from angular 
velocities at joints of Aibo robot.  

Such challenges also arise in the case of source localization 
from received sound. A survey of such works involving sound 
source localization in the field of robotics has been presented 
at [12]. In [1], it is presented that the problem of ego noise 
cancellation and sound source localization in case of 
unmanned aerial vehicles is novel and a sector of interest in 
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recent research works targeting applications such as localizing 
emergency or distress calls.  

Many works targeting the aforementioned problem of 
source localization tackles the problem based on algorithms 
modifying Multiple Signal Classification (MUSIC) and 
Generalized Cross Correlation (GCC). Examples of modified 
MUSIC algorithm include incremental variations of 
generalized eigenvalue decomposition or generalized singular 
value decomposition, namely iGEVD-MUSIC as shown in the 
case of humanoid robots in [15] and iGSVD-MUSIC 
demonstrated in case of quadrotor in [3]. On the other hand, 
open framework ManyEars [16] uses GCC for real-time 
microphone array processing to track sound source. In [2], 
cross correlation information of four microphones mounted on 
a micro air vehicle has been used to localize the sound source. 
Use of the speed or orientation data of self-monitoring sensors 
embedded within the UAV has also been proposed in [7] using 
GEVD-MUSIC to estimate the noise correlation matrix. In 
[8], neural networks have been used for sound separation and 
identification experiments involving UAV. In [6], several 
UAV ego-noise reduction algorithms have been compared, 
including beamforming, blind source separation or time-
frequency processing, but they require the information of 
target sound location beforehand, and hence does not involve 
the problem of sound source localization.  

II. METHODOLOGY   

The task was divided into two parts. SNR can be as low as 
-15 dB or less, noise was reduced from the provided audio 
files. After the noise is removed considerably relatively clean 
audios were used to estimate the source of the speech.  

 

 

Fig 1. Flowchart of proposed methodology 

For noise reduction various methods and approaches were 
applied. The best result were achieved by applying 
Generalized Sidelobe Canceller (GSC) Beamformer in the 4 
rotor directions. This has been implemented using Phased 
Array System Toolbox of MATLAB.  

This GSC Beamformer is applied on the noisy audios to 
extract motor noise which is later processed to use as reference 
signal for wiener filtering of the noisy audios. When GSC is 
done on a multi-channel audio, the output of the system does 
not remain multi-channel anymore i.e. it loses the phase 
information which is required for source localization. The 
novelty of this paper lies in applying general sidelobe 
cancellation on a multi-channel audio and to regain the phase 
information using pyroomacoustics considering the 
microphone array structure  

A. GSC Beamformer  

A GSC beamformer splits the incoming signals into two 
channels. One channel goes through a conventional 
beamformer path and the second goes into a sidelobe 
canceling path. The algorithm first pre-steers the array to the 
beamforming direction and then adaptively chooses filter 
weights to minimize power at the output of the sidelobe 
canceling path. The algorithm uses least mean squares (LMS) 
to compute the adaptive weights. The final beamformed signal 
is the difference between the outputs of the two paths.   

The generalized sidelobe canceler (GSC) is an efficient 
implementation of a linear constraint minimum variance 
(LCMV) beamformer. LCMV beamforming minimizes the 
output power of an array while preserving the power in one or 
more specified directions. This type of beamformer is called a 
constrained beamformer. Exact weights for the constrained 
beamformer can be computed but the computation is costly 
when the number of elements is large. The computation 
requires the inversion of a large spatial covariance matrix. The 
GSC formulation converts the adaptive constrained 
optimization LCMV problem into an adaptive unconstrained 
problem, which simplifies the implementation.   

In the GSC algorithm, incoming sensor data is split into two 
signal paths as shown in the block diagram. The upper path is 
a conventional beamformer. The lower path is an adaptive 
unconstrained beamformer whose purpose is to minimize the 
GSC output power. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. GSC Beamformer 

The element sensor data is presteered by time-shifting the 
incoming signals. Presteering time-aligns all sensor element 
signals. The time shifts depend on the arrival angle of the 
signal. The presteered signals are then passed through the 
upper path into a conventional beamformer with fixed 
weights, wconv. The presteered signals are also passed through 
the lower path into the blocking matrix, B. The blocking 
matrix is orthogonal to the signal and removes the signal from 
the lower path. The lower path signals are filtered through a 
bank of FIR filters. The FilterLength property sets the length 
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of the filters. The filter coefficients are the adaptive filter 
weights, wad. Difference between the upper and lower signal 
paths are computed. This difference is the beamformed GSC 
output. The beamformed output is fed back into the filter. The 
filter adapts its weights using a least mean-square (LMS) 
algorithm. The actual adaptive LMS step size is equal to the 
value of the LMSStepSize property divided by the total signal 
power.  Beamformer have been applied in the rotor directions.   

 
Fig 4. Plot of microphone array and rotor directions 

Filter Length: 256  
Sample Rate: 44100  

B. Synthesizing Rotor Noise & Filtering  

 Thus, we have extracted signals which are used as sound 
sources and placed at rotor positions. Then we have simulated 
synthetic rotor noise by pyroomacoustics. Pyroomacoustics is 
a software package aimed at the rapid development and testing 
of audio array processing algorithms. By applying this method 
we have incorporated phase information and synthesized 8 
channel rotor noise to be used as the reference of the wiener 
filter in attenuation mode to filter the noise. So, the flowchart 
of the noise cancelling phase is as following, 

 

 

 

Fig 5. Flowchart of Noise Cancellation 

C. Sound Source Localization  

Multi-channel BSS Locate software aims at localizing audio 
sources in 3D audio scene based on recorded signals using an 
array of N microphones. Results are expressed in terms of 
directions (azimuth and elevation) using the centroid of this 
microphones array as reference.  

Localization is achieved under far field assumption based on 
a choice between several local angular spectrum methods. 
Chosen method is applied to each microphone pair and 
resulting contributions (of all microphones pairs) are then 
aggregated. Available local angular spectrum methods are 
those used in BSS Locate Toolbox [1]: GCC-PHAT, GCC 
NON LIN, MVDR, MVDRW, DS, DSW and DNM. No 
clustering based methods is available in Multi-channel BSS 
Locate software.  

GCC-PHAT and GCC NON LIN methods are used to obtain 
angular spectrum separately. Also, wiener filtering in 
‘attenuation’ mode is used to attenuate rotor noises of a drone. 
Some special parameters which helped us to estimate better 
direction on given problem set are described below:  

GCC-PHAT and GCC NON LIN methods are used to obtain 
angular spectrum separately. Wiener filtering in ‘attenuation’ 
mode is used to attenuate rotor noises of a drone. While 
designing the system, the following things are considered:  

a. Number of Sources: Number of sources to be located. 
Though we had to identify only one source, for some 
cases (where extensive noise is present) our desired sound 
source may be 2nd or 3rd source. So, we identified more 
than one source and chose one among them 
 

b. Wiener Filter in Attenuation Mode: Wiener filter aims to 
produce the estimation of a target random signal from an 
observed noisy process. It can be used in two different 
modes- emphasis and attenuation. Emphasis mode is used 
to separate the reference the signal while in attenuation 
mode the reference signal is to be suppressed in the output 
signal. In our system, reduction of rotor noises in angular 
spectrum is desired which requires the filter to be 
designed in attenuation mode.  
 

c. Reference Signal of Wiener Filtering: We simulated 
individual rotor noises according to their physical 
position. 

Wiener filtering for localization enhancement:  In order 
to attenuate or emphasize the localization of a type of signal 
into a mixture, the toolbox provides some Wiener filtering 
tools. The typical scenario is a mixture composed of one 
speaker and a noise source, both located at different positions. 
If an excerpt of this noise is available for example, it can be 
used to enhance either the speaker localization or the noise 
localization on the mixture. This technique is only available 
for GCC NON LIN and GCC PHAT methods.  
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Averaged covariance definition:   

Let us define x the multi-channel mixture (Ks 
samples and I channels) and xn the multi-channel signal 
excerpt to be attenuated or emphasized into the mixture (Kn 
samples and I channels). We denote as X(n,f) and Xn(n,f) the 
corresponding I-dimensional complex valued vectors of TF 
coefficients.  

First, let us define the averaged covariance of a signal Y(n,f)  
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Attenuation mode:   

In the “attenuation” mode, the signal excerpt is used 
to be attenuated into the mixture. The filtered version of X is 
computed below:  
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Thus we localize the static source.  

III. RESULT  

The results from the proposed method are quite promising. 
Actual azimuth and elevation angles were provided for each if 
the 300 audios. We have finally extracted the azimuth and 
elevation angles by GCC- PHAT and GCC NON LIN 
incorporating GSC beamforming for generating reference 
signal for wiener filtering. The azimuth and elevation angles 
are determined separately first and then angular error is 
calculated using following formula, 
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We have compared our results with the results from GCC 
PHAT and GCC NONLIN method from [1]. A comparative 
analysis of the results are shown in the following chart, 

TABLE I.  NUMBER OF OCCURENCES FOR DIFFERENT ANGULAR 

ERRORS 

 
Angular 

error     
(0� - 5�) 

Angular 
error     

(5� - 10�) 

Angular 
error    

(10� - 15�) 

Angular 
error       

(15� - 20�) 

Angular 
error  (> 

20�) 

1 235 40 3 3 19 

2 242 33 6 3 16 

3 180 43 5 3 69 

4 184 41 4 3 68 

For better understanding of the overall result we have 
determined some statistical parameters such as mean and 
deviation of the angular errors. Another chart containing mean 
angular error and standard deviation of the angular error of 
different methods, 

TABLE II.  MEAN AND STANDARD DEVIATION  OF ANGULAR ERROR 

 Mean angular error Standard deviation 

1 7.75 19.96 

2 6.41 16.99 

3 20.36 33.18 

4 19.70 32.84 

 

Where,  
1=GCC PHAT with GSC Beamformer (Proposed) 
2=CGG NON LIN with GSC Beamformer (Proposed) 
3=Conventional GCC PHAT (Baseline) 
4 = Conventional GCC NON LIN (Baseline) 
 
From, the results it is apparent that, our proposed method 
provides significant improvement from the results of [1]. 

 

Fig. 4. Comparison of Baseline and Proposed method for GCC PHAT 

 

Fig. 5. Comparison of Baseline and Proposed method for GCC NON LIN 
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If 10� of angular deviation is allowed then, the accuracy of our 
proposed method is 91.67% for both GCC PHAT and GCC 
NON LIN methods. Accuracy is increased by 17.34% by our 
proposed method. According to second table GCC NON LIN 
provides better result as mean and standard deviation of 
angular error both are less than that of GCC PHAT. 

IV. Conclusion 

In this paper, a state of the art method for determining 
azimuth and elevation from audio recorded by a microphone 
array embedded on a UAV is proposed. The results from the 
proposed method has a healthy accuracy with angular error 
less than 10 degrees. Reasonable progress has been recorded 
compared to similar methods which is inspiring for further 
research in this topic. Sound source localization by audio 
recorded by a particular microphone system is a relatively new 
area of research and our proposed method provides significant 
improvement in terms of accuracy. Incorporating wiener 
filtering with especially extracted noise signal mentioned in 
the methodology as reference signal of the filter is the main 
contribution of this method. Finally this approach can be 
applied to localize sound source in practical scenarios as it can 
locate a sound source quite accurately even from audios of -
15 dB SNR. In future, we wish to work on improving the 
performance of our method and achieve better accuracy. 
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